

Mild Redox Complementation Enables H₂ Activation by [FeFe]-Hydrogenase Models

James M. Camara and Thomas B. Rauchfuss*

School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States

Supporting Information

ABSTRACT: Mild oxidants such as $[Fe(C_5Me_5)_2]^+$ accelerate the activation of H₂ by $[Fe_2[(SCH_2)_2NBn](CO)_3^-$ (dppv)(PMe₃)]⁺ ([1]⁺), despite the fact that the ferrocenium cation is incapable of oxidizing [1]⁺. The reaction is first-order in [1]⁺ and [H₂] but independent of the $E_{1/2}$ and concentration of the oxidant. The analogous reaction occurs with D₂ and proceeds with an inverse kinetic isotope effect of 0.75(8). The activation of H₂ is further enhanced with the tetracarbonyl [Fe₂[(SCH₂)₂NBn](CO)₄(dppn)]⁺ ([2]⁺), the first crystallographically characterized model for the H_{ox} state of the active site containing an amine cofactor. These studies point to rate-determining binding of H₂ followed by proton-coupled electron transfer. Relative to that by [1]⁺, the rate of H₂ activation by [2]⁺/Fc⁺ is enhanced by a factor of 10⁴ at 25 °C.

Tydrogenases $(H_2 ases)$ are attractive targets for synthetic **T**modeling because they catalyze the redox of H_2/H^+ , an important and topical reaction.¹ The [FeFe]- (and [NiFe]-) hydrogenases operate by the combined action of acid-base and electron-transfer processes. As has been previously shown by both biophysical studies² and synthetic modeling,³ the catalytic properties of the active site in the [FeFe] enzyme are enabled by the juxtaposition of functional groups dedicated to substrate binding, specifically the azadithiolate cofactor and the distal Fe center. This active site also features two redox-active components, the $Fe_2(SR)_2$ and Fe_4S_4 subsites, each of which provides one of the two electrons required for the $H_2/2H^+$ couple. In recent years, the advantageous cooperative reactivity of the amine cofactor and one Fe center has been demonstrated in models,⁴ and this reactivity enables the enzyme to serve as a highly active proton-reduction catalyst. Unsolved in previous models is the ability of the same enzyme to activate H_{2} , which is an excellent substrate for the enzyme.^{2b,c}

The activation of H₂ by diiron models requires that the Fe₂ center be (i) sufficiently electrophilic to bind H₂ but (ii) not electrophilic enough to induce binding of the amine to Fe.⁵ For a variety of ligands, mixed-valence complexes of the type $[Fe_2[(SCH_2)_2NR](CO)_{6-x}(PR_3)_x]^+$ almost satisfy these criteria, but such models are very slow to activate H₂, requiring high pressures and many hours. In this report, we show that rapid H₂ activation by these models can be achieved by the addition of a mild and fast oxidant.

We previously showed that $[Fe_2[(SCH_2)_2NBn](CO)_3-(dppv)(PMe_3)]^+$ ([1]⁺; dppv = *cis*-C₂H₂(PPh₂)₂; Figure 1) reacts with H₂ only slowly (>26 h, 25 °C, 1800 psi H₂).⁶ We have now discovered that the same complex in the presence of 1 equiv

Figure 1. Active site of (left) the H_{ox} state of [FeFe]-hydrogenase and (right) model [1]⁺ (R = CH₂Ph).

of the mild oxidant $[Fe(C_5Me_5)_2]BAr_4^F [Ar^F = 3,5-C_6H_3-(CF_3)_2]$ reacts with 2 atm H₂ quantitatively at 25 °C in hours to give the diferrous hydride product. The nearly isosteric complex that lacks the amine cofactor, $[Fe_2(S_2C_3H_6)(CO)_3-(dppv)(PMe_3)]^{+,5}$ is *un*reactive toward H₂ under the same conditions.

To simplify the analysis of the heterolytic activation of dihydrogen, the proton was trapped as $[HP(o-tol)_3]^+$. Heterolytic cleavage in the presence of $P(o-tol)_3$ produced the known hydride $[1H]^+$ and $[HP(o-tol)_3]^+$, which undergoes slow proton transfer on the NMR time scale and displays distinctive ¹H and ³¹P NMR signals. ²H NMR analysis of the same reaction in CH₂Cl₂ solution using D₂ showed equal deuterium incorporation into $[1D]^+$ and the coproduct $[DP(o-tol)_3]^+$ (see the Supporting Information). It is proposed that H₂ activation initially produces the diferrous ammonium hydride complex $[1HH]^{2+}$. Subsequent deprotonation and rearrangement of the incipient terminal hydride complex leads to the final product, $[1H]^+$, which contains a bridging hydride (Scheme 1).

To investigate the role of the oxidant, we carried out reactions with various ferrocenium derivatives⁷ $[Me_nFc]BAr_4^F (n = 10, 8, 5; [Me_{10}Fc]^+ = [Fe(C_5Me_5)_2]^+, [Me_8Fc]^+ = [Fe(C_5Me_4H)_2]^+, [Me_5Fc]^+ = [Fe(C_5Me_5)(C_5H_5)]^+)$ (Table 1). Monitoring product formation by ¹H NMR spectroscopy, we found that the rate of reaction was independent of the oxidant strength (for the BAr_4^F salts, E = -593 to -313 mV vs Fc/FcBAr_4).⁸ Furthermore, the rate was unaffected by the concentration of the oxidant. These findings imply that electron transfer does not occur in or before the rate-determining step.

Having observed that the oxidant did not affect the rate of H_2 oxidation, we probed the effect of hydrogen pressure. When 1 equiv of oxidant was used, the appearance of the product $[1H]^+$ was strictly first-order. Under these conditions, H_2 dissolved quickly and was present in large excess. As a result, $[H_2]$ remained constant over the course of each experiment. A plot of k_{obs} vs $[H_2]$ was linear, verifying a first-order dependence

Received:February 24, 2011Published:May 06, 2011

Scheme 1. Activation of H_2 by $[1]^+$ and $Cp^*{}_2Fe^+$ To Form $[1H]^+$

Table 1. Observed Pseudo-First-Order Rate Constants for the Conversion of 1 to $[1]^+$ with Various Ferrocenium Oxidants^{*a*}

	equiv of	$E(Me_nFc^{+/0})$		
oxidant	Me_nFc^+	$[mV vs E(Fc^{+/0})]$	$10^{5}k_{\rm obs}({\rm s}^{-1})$	conv. (%)
$[Me_{10}Fc]^+$	2	-593	2.2(3)	100
$\left[\mathrm{Me_{10}Fc}\right]^+$	2^{b}	-593	2.2(4)	100
$\left[\mathrm{Me_{10}Fc}\right]^+$	4	-593	2.7(3)	100
$[\mathrm{Me_8Fc}]^+$	2	-512	4.2(6)	>75
$[\mathrm{Me_8Fc}]^+$	4	-512	4.2(5)	>75
$[Me_5Fc]^+$	2	-313	3.3(8)	>50
^{<i>a</i>} Conditions: 2 atm H ₂ , 0 °C, CD ₂ Cl ₂ solution, $[1]_o = [P(o-tol)_3] =$				
$4.67 \text{ mM}^{b} D(a \text{ tal})$ was amitted from the reaction				

4.67 mM. o P(o-tol)₃ was omitted from the reaction.

on $[H_2]$. These observations imply a rate law that includes only terms in $[H_2]$ and $[1^+]$:

$$\frac{d[\mathbf{1}\mathbf{H}^+]}{dt} = k_{\rm obs}[\mathbf{H}_2][\mathbf{1}^+]$$
(1)

The experimental rate law in eq 1 is consistent with two kinetic situations (Scheme 2). The first involves rate-determining binding of H_2 (Step 1, Scheme 2) followed by rapid oxidation and/or heterolysis. In the second kinetic scenario, fast H_2 binding is followed by rate-determining heterolysis to form the mixed-valence hydride (Step 2, Scheme 2), which is rapidly oxidized in a subsequent step. In either scenario, the rate of reaction can be improved rationally on the basis of well-established principles.⁹ The favorability of H_2 cleavage is expected to depend on the hydride-acceptor ability of the Fe₂⁺ fragment. Also, numerous precedents show that the electrophilicity of metal centers correlates with their affinity for H_2 .^{9d} Thus, more electrophilic diiron models should result in a faster reaction.

An obvious choice for an electrophilic diiron center was $[Fe_2[(SCH_2)_2NBn](CO)_4(dppv)]^+$, a *tetra*carbonyl relative of $[1]^+$.¹⁰ This mixed-valence compound was found to be unstable, probably because of disproportionation caused by amine binding.⁵ We discovered, however, that the use of a more

Scheme 2. Two Possible Kinetic Scenarios for H_2 Oxidation by $[1]^+$ and Ferrocenium (Terminal Ligands Have Been Omitted for Clarity).

$$[Fe_{2}(SR)_{2}]^{+} + H_{2} \xrightarrow{step 1} [Fe_{2}(SR)_{2}(H_{2})]^{+} \xrightarrow{heterolysis}_{step 2} [Fe_{2}(SR)_{2}H]^{+} + H^{-}$$

Figure 2. Structure of the cation in $[Fe_2[(SCH_2)_2NBn](CO)_4$ (dppn)]BAr^F₄. Selected bond lengths (Å): Fe2-N1, 3.234(3); Fe1-Fe2, 2.568(1); [Fe2-P]_{ave}, 2.231(1).

rigid diphosphine allowed the sought-for electrophilic, amine-containing cation to be isolated. Specifically, $[Fe_2-[(SCH_2)_2NBn](CO)_4(dppn)]^+$ ($[2]^+$) [dppn = 1,8-bis-(diphenylphosphino)naphthalene] was accessed in two steps from Fe₂[(SCH₂)₂NBn](CO)₆. According to cyclic voltammetric measurements on CH₂Cl₂ solutions, the $[2]^{+/0}$ couple occurs at -254 mV, which is 390 mV more positive than the $[1]^{+/0}$ couple.

Treatment of a CH₂Cl₂ solution of **2** with 1 equiv of $[Fc]BAr_{4}^{F}$ gave the mixed-valence salt $[2]BAr_{4}^{F}$, solutions of which remained unchanged for up to 24 h at room temperature. The stability of this mixed-valence cation allowed us to obtain single crystals. Crystallographic analysis showed that the amine (proton acceptor) is poised over the electrophilic Fe center (hydride acceptor) at a distance of only 3.2 Å. The high stability of this organometallic frustrated Lewis pair¹¹ is attributed to the steric shielding provided by a pair of phenyl rings that project axially from the dppn ligand (Figure 2). IR spectra in the ν_{CO} region showed that [2]⁺ is far more electrophilic than [1]⁺: $\nu_{CO} = 1896, 2022, 2078$ vs 1870, 1965, 2017 cm⁻¹, respectively.

The EPR spectrum of $[2]BAr_4^F$ (Figure 3) features an axial pattern and exhibits triplets indicative of large hyperfine coupling to ³¹P, consistent with the assignment of $[2]^+$ as $[(dppn)(CO)-Fe^I(\mu-SR)_2Fe^{II}(CO)_3]^+$. The spectrum is similar to that reported for related cations such as $[Fe_2(S_2C_3H_6)(CO)_4^ (dppv)]^+$. It is likely that, as previously reported for $[1]^+$, the electrophilic site is the iron center formally assigned as Fe(I).¹²

Gratifyingly, in the presence of 1 equiv of $[Fc]BAr^{F}_{4}$, $[2]^{+}$ was found to react rapidly with 1 atm H₂ ($t_{1/2} < 13$ min at 20 °C). Monitoring of the reaction by IR (Figure 4) and ¹H NMR spectroscopies confirmed the formation of the same ammonium hydride produced by treatment of 2 with 2 equiv of $[H(OEt_2)_2]BAr^{F}_4$. Rate measurements showed H₂ activation by $[2]^+/[Fc]^+$ to be 10-fold faster than that by $[1]^+/[Fc]^+$ and 10⁴-fold faster than that by $[1]^+$ in the absence of a supplemental oxidant.

Figure 3. X-band EPR spectrum of [2]BAr^F₄ (110 K, 1:1 CH₂Cl₂/ toluene glass). Parameters: $g_z = 2.1260$ with $A_z({}^{31}P) = 78$ MHz; $g_x \approx g_y = 2.0165$ with $A_x({}^{31}P) \approx A_y({}^{31}P) = 79$ MHz.

Figure 4. IR spectra of a CH_2Cl_2 solution of [2]BAr^F₄ and [Fc]BAr^F₄ before (black) and 5 min (red) and 14 min (blue) after introduction of H₂ (1 atm).

We measured the rates of reaction for a 1:1 mixture of [2]BAr^F₄ and [Fc]BAr^F₄ with H₂ and D₂ using UV-vis spectroscopy at 20 °C. The kinetic isotope effect (KIE) was found to be $k_{\rm H}/k_{\rm D} = 0.71(8)$. Reactions in which H₂ cleavage is known to be rate-determining typically exhibit a *normal* KIE (e.g., $k_{\rm H}/k_{\rm D} \sim 2.0$).^{9d} Although few reports have described KIEs for H₂ binding,¹³ an inverse KIE has been observed for H₂ binding to Ir(H)₂Cl(PBu^t₂Me)₂.¹⁴ The inverse KIE measured for our reaction is inconsistent with rate-determining heterolytic cleavage of H₂ and suggests that H₂ binding is rate-determining.

An enigmatic aspect of the present results is the observation that $[1]^+$ and $[2]^+$ do not serve as oxidants for the oxidation of H_2 by a second equivalent of the same cations. This finding may be explicable if the activation of H_2 occurs via *concerted* proton-coupled electron transfer (PCET), whereby intramolecular heterolysis of the H_2 ligand depends on the rate of the electron transfer.¹⁵ Proton transfer associated with the intramolecular heterolysis of the H_2 adducts is expected to be extremely rapid,¹⁶ requiring a rapid oxidant. The rate of self-exchange for Fc^{+/0} is indeed high ($k = 5 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$),¹⁷ but we propose that self-exchange for $[1]^{+/0}$ and $[2]^{+/0}$ are probably far slower because of the substantial structural changes that accompany this redox process.¹⁸ Further work on these self-exchange rates is required.

We have shown that H_2 activation by the organometallic radicals $[Fe_2[(SCH_2)_2NR](CO)_{6-x}L_x]^+$ requires the addition

of an oxidant, which simulates the role of the 4Fe-4S cluster in the protein. It is intriguing that for heterolysis the oxidant must be both mild and fast. Kinetic measurements suggest that H_2 binding is rate-determining. The present results point to the important role of PCET in the heterolytic activation of dihydrogen in this class of enzyme mimics.

ASSOCIATED CONTENT

Supporting Information. Experimental details. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author rauchfuz@illinois.edu

ACKNOWLEDGMENT

This research was supported by the NIH. We thank Danielle Gray for solving the structure of $[2]BAr^{F}_{4}$, Mark Nilges for assistance with EPR measurements, and Matthew Olsen for advice.

REFERENCES

 (a) Rakowski Dubois, M.; Dubois, D. L. Acc. Chem. Res. 2009, 42, 1974–1982.
 (b) Karunadasa, H. I.; Chang, C. J.; Long, J. R. Nature 2010, 464, 1329–1333.
 (c) Yang, J. Y.; Chen, S.; Dougherty, W. G.; Kassel, W. S.; Bullock, R. M.; DuBois, D. L.; Raugei, S.; Rousseau, R.; Dupuis, M.; Rakowski DuBois, M. Chem. Commun. 2010, 46, 8618– 8620.
 (d) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Acc. Chem. Res. 2009, 42, 1995–2004.

(2) (a) Vincent, K. A.; Parkin, A.; Armstrong, F. A. *Chem. Rev.* 2007, 107, 4366–4413. (b) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. *Chem. Rev.* 2007, 107, 4273–4303. (c) Fontecilla-Camps, J. C.; Amara, P.; Cavazza, C.; Nicolet, Y.; Volbeda, A. *Nature* 2009, 460, 814–822.

(3) (a) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100–108. (b) Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245–2274.

(4) Barton, B. E.; Olsen, M. T.; Rauchfuss, T. B. J. Am. Chem. Soc. 2008, 130, 16834–16835.

(5) Olsen, M. T.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 2010, 132, 17733–17740.

(6) Olsen, M. T.; Barton, B. E.; Rauchfuss, T. B. Inorg. Chem. 2009, 48, 7507–7509.

(7) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877-922.

(8) Geiger, W. E.; Barrière, F. Acc. Chem. Res. 2010, 43, 1030-1039.

(9) (a) Jia, G.; Lough, A. J.; Morris, R. H. Organometallics 1992, 11, 161–171. (b) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865–5867. (c) Heinekey, D. M.; Oldham, W. J. J. Chem. Rev. 1993, 93, 913–926. (d) Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes; Kluwer Academic/Plenum: New York, 2001.

(10) Justice, A. K.; Zampella, G.; De Gioia, L.; Rauchfuss, T. B.; van der Vlugt, J. I.; Wilson, S. R. *Inorg. Chem.* **2007**, *46*, 1655–1664.

(11) Stephan, D. W. *Dalton Trans.* **2009**, 3129–3136 and references therein.

(12) Justice, A. K.; De Gioia, L.; Nilges, M. J.; Rauchfuss, T. B.; Wilson, S. R.; Zampella, G. *Inorg. Chem.* **2008**, 47, 7405–7414.

(13) Heinekey, D. M. J. Labelled Compd. Radiopharm. 2007, 50, 1063–1071.

(14) Hauger, B. E.; Gusev, D.; Caulton, K. G. J. Am. Chem. Soc. **1994**, *116*, 208–214. Although the inverse KIE for H₂ binding is not explicitly

reported in this paper, it can be calculated from the equilibrium isotope effect for H_2 complex formation and the KIE for H_2 dissociation.

(15) (a) Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004–5064. (b) Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363–390.
(16) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic

Chemistry; University Science Books: Sausalito, CA, 2004.

(17) (a) Nielson, R. M.; Hupp, J. T. Inorg. Chem. **1996**, 35, 1402–1404. (b) Nielson, R. M.; McManis, G. E.; Safford, L. K.; Weaver, M. J. J. Phys. Chem. **1989**, 93, 2152–2157.

(18) (a) Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008–7009. (b) Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 2007, 46, 6152–6154.